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K-Nearest Neighbor
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What is Image Classification?
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The Problem: Semantic Gap B =0

[[105 112 1@8 111 104 99 106 99 96 103 112 119 104 97 93 B87]
\ [ 91 98 182 1e6 104 79 98 103 99 185 123 136 110 105 94 B85]
N [ 76 B85 9@ 1e5 128 185 87 96 95 99 115 112 106 103 99 B85]
= [ 99 81 81 93 120 131 127 100 95 98 102 99 96 93 101 094]
. [1e6 91 61 64 69 91 BB B5 101 187 189 98 75 B4 96 95]
[114 188 85 55 55 69 64 54 64 B7 112 129 98 74 B84 091]
[133 137 147 103 65 81 B® 65 52 54 74 84 102 93 85 B2]
e \ [128 137 144 140 1089 95 B6 70 62 65 63 63 60 73 B86 101]
[125 133 148 137 119 121 117 94 65 79 B@ 65 54 64 72 098]
[127 125 131 147 133 127 126 131 111 96 89 75 61 64 72 B4]
[115 114 109 123 150 148 131 118 113 109 100 92 74 65 72 78]
[ B9 93 9@ 97 188 147 131 118 113 114 113 109 186 95 77 B8e]
[ 63 77 86 81 77 79 102 123 117 115 117 125 125 130 115 B87]
[ 62 65 B82 B89 78 71 86 101 124 126 119 101 107 114 131 119]
( [63 65 75 BB B9 71 62 B1 120 138 135 105 B1 98 110 118]
[ B7 65 71 87 186 95 69 45 76 130 126 187 92 94 185 112]
[118 97 B2 86 117 123 116 66 41 51 95 93 89 95 102 187]
[164 146 112 B0 B2 120 124 104 76 48 45 66 BB 101 102 109]
[157 170 157 126 93 86 114 132 112 97 69 55 70 B2 99 094]
[130 128 134 161 139 100 109 118 121 134 114 87 65 53 69 B86]
[128 112 96 117 158 144 120 115 104 187 102 93 87 B1 72 79]
[123 107 96 86 83 112 153 149 122 109 104 75 8@ 107 112 99]
[122 121 102 80 B2 86 94 117 145 148 153 102 58 78 92 107]
[122 164 148 183 71 56 78 B3 93 183 119 139 182 61 69 B4]]

What the computer sees
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Challenges: Viewpoint variation
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Other Challenges . N i
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How to Classify Images?

N i
Y e . sensetime

= Data-Driven Approach
= Collect a dataset of images and labels
= Use Machine Learning to train a classifier

= Evaluate the classifier on new images
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Naive Imager Classifier: Nearest Neighlgor 5 Jin

A\
B <
import numpy as np

class NearestNeighbor:
def _ init__ (self):
pass

def train(self, X, y):
"% X is N x D where each row is an example. Y is l-dimension of size N """
# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr =y

def predict(self, X):
""" X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]
# lets make sure that the output type matches the input type
Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

# loop over all test rows
for i in xrange(num test):
# find the nearest training image to the i'th test image
# using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Distance Metric:

— p p
di(ly, 1) = Z|I1 — 13|
p
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Naive Imager Classifier: K-Nearest Neigphbor M il

o

pomme g <

Instead of copying label from nearest neighbor, take majority vote from K closest points.

k

1 k
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Naive Imager Classifier: Nearest Nelghbor
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L1 (Manhattan) distance L2 (Euclidean) distance

ah
N

<> dy(Iy, 1) = \/Z(ﬁ” -’
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K-Nearest Neighbors: Hyperparameters M i

« What is the best value of k to use?

« What is the best distance to use?

= These are hyperparameters: choices about the algorithm that we set

rather than learn
= Very problem-dependent.

= Must try them all out and see what works best.
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K-Nearest Neighbors: Hyperparameters M i

= Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

= Idea #2: Split data into train and test, choose hyperparameters that work

best on test data

BAD: No idea how algorithm will perform on new data

= Idea #3: Split data into train, validation, and test; choose hyperparameters

on validation and evaluate on test
Better!
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K-Nearest Neighbors: Hyperparameters

M i
=  sensetime

= Idea #4: Cross-Validation: Split data into folds, try each fold as validation

and average the results

Fold1l | Fold2 | Fold3 | Fold4 | Fold5 | Fold 6 Test
Fold1l | Fold2 | Fold3 | Fold4 | Fold5 | Fold 6 Test
Fold1l | Fold2 | Fold3 | Fold4 | Fold5 | Fold 6 Test

Note: Useful for small datasets, but not used too frequently in deep learning

July 2, 2019
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Drawbacks of K-Nearest Neighbors M i

= k-Nearest Neighbor on images never used

= Very slow at test time

= Distance metrics on pixels are not informative

Original Shifted Tinted
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Drawbacks of K-Nearest Neighbors M i

= k-Nearest Neighbor on images never used

= Very slow at test time

= Distance metrics on pixels are not informative

= Curse of dimensionality
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0
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© 0 o0 o 0%
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@) O O @) O
@ © © ©
Dimension = 1 Dimension = 2 Dimension = 3
Points = 4 Points = 42 Points = 43
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K-Nearest Neighbors: Summary N Eili

= In image classification we start with a training set of images and labels,

and must predict labels on the test set;

= The K-Nearest Neighbors classifier predicts labels based on nearest

training examples;
= Distance metric and K are hyperparameters;

= Choose hyperparameters using the validation set; only run on the test set

once at the very end.
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Part Il
Linear Classifier
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Linear Classifier
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sensetime

Recall CIFAR 10
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50,000 training images of sizes 32x32x3
10,000 test images.

Image

10 numbers giving
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Linear Classifier

10x1

f(x, W)|=

10 x 3072

Array of 32x32x3 numbers
3072 numbers in total

Parameters
or weights

July 2, 2019

3072 x1

Wix

|
|

+b

10x1

10 numbers giving
f(X; W) class scores
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An Example of Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

56

231

56

24

231

1.1

02 |-05] 01 | 20
1.5 | 1.3 | 21 | 0.0
O |0.25| 0.2 | -0.3

24

3.2

-1.2
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-96.8

437.9

61.95

Cat Score

Dog Score

Ship Score
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Linear Classifiable M i

b Sl

= Not Linearly Classifiable Cases

car classifier

airplane classifier G
.

x

/

deer classifier
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Part III
Loss Functions and Optimization
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Things TODO in Linear Classifier - M Eijii

= Quantify the Classification Scores

=« Loss Function

= Find the Parameters Effectively

= Optimization

July 2, 2019 Deep Learning Fundamentals 25



Loss Functions

« What is Loss Function?

= A loss function tells how good our current classifier is.

= Given a dataset of examples: {(x;, y;)}¥,

= Loss over the dataset is a sum of loss over examples:

1
L= Nz Li(f(x;, W), yi)

July 2, 2019 Deep Learning Fundamentals
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Regularization M il

L ]

Regularization: Model should be "simple”,
1 so it works on test data

L= N Li(f(xi' w), Vi) + AR (W) Occam's Razor:

i "Among competing hypotheses,

— _/ the simplest is the best"
YT William of Ockham, 1285 - 1347

Data Loss: Model predictions should
match training data

A

\>
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Regularization M il

= Common Regularization

= L2 Regularization: R(W) = X7_, B;

L1 Regularization: R(W) = X7_,| ]

Elastic net (L1 + L2): RW) = a ¥°_o 7 + XV_ |8

Max norm regularization

Dropout

Fancier: Batch normalization, stochastic depth

July 2, 2019 Deep Learning Fundamentals 28



Softmax Classifier M Eijin

3.2

5.1

-1.7

July 2, 2019

Cat Score

Dog Score

Ship Score

= Scores = unnormalized log probabilities of the classes

P(Y =k|X =x;) = Zesksj where s = f(x;, W)

je

Want to maximize the log likelihood (loss function) to minimize the

negative log likelihood of the correct class:
Li = —logP(Y = y;|X = x;)

e>vi

Zjesj

= In Summary: L; = —log(

)

Deep Learning Fundamentals 29



Softmax Classifier M Eijin

e>vi
Li - = log(Z]eS])

unnormalized normalized

probabilities probabilities
Cat 3.2 24.5 0.13

exp normalize
Dog | 5.1 » 1164.0 > | 0.87 » L; = —10g(0.87)
= 0.06

Ship | -1.7 0.18 0.00

unnormalized log
probabilities

July 2, 2019 Deep Learning Fundamentals 30



Optimization 7 S il

e sensetime

« How to find the best W and b?
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Optimization: Gradient Decent - M i

L ]

« Stochastic Gradient Descent (SGD)
o LOW) = <2, LiCxs,yi, W) + AR(W)

1
- VwL(W) =+ YN VwLi(xi, vi, W) + AV R(W)

while True:
data_batch = sample _training data(data, 64)

weights grad = eval gradient(loss_func, data batch, weights)

weights -= weights grad * learning rate
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Part IV

Backpropagation and Neural
Networks
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Backpropagation N i

= How to get the gradient? = Givenx=-2,y=5,z=-4

= f(x,y,z) = (x+y)z _ dq _ q
-q—x+y _ax—l _ay—l
-2
of of
X - = — = — =
f=az og % oz 1

—4 g 3

5 ( > 4

y f 1o _Of_03fda  Of _0fdq

4 N R dx  0q 0x dy  0q0y
of

- of ="
of

a—Z:q:3
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Backpropagation /) il
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o

1
- f(W’ X) = 1+e—(W0xO+W1x1+W2)

2.00
Yo 20|

-1.00
¥ a0

-3.00
Wi — ]
-0.40

-2.00 |
x —
1 060

-3.00

0.20

9 _4 1

ox 1 1 1 . =
Sigmoid Function: o(x) = 14 e
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Backpropagation N Eid

= Let z = x + y. What if x and y are vectors?

E X = (x]_;-XZ)I y = ()’1;3’2)

= Z= (X1 + Y1, X2 +Y2)

_ 97 ,aﬁ ,%_0,__1
axl axz a 1 axz
""""" 9z, 9z,1 | ;
19z |0x; dxy| _[1 O7: , )
. <= o 04"y 1 Jacobian matrix
i axl axz_ i
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Backpropagation N Eili

= Let y = max(0,x) and x is a vector of size 4096. What is the size of the

Jacobian matrix?

= 4096X%x4096

= What the size of the Jacobian matrix if we use a minibatch of size 1007?

= 409600x409600

« What does the Jacobian matrix look like?
[1 ces 0‘
] 0 . 1

July 2, 2019 Deep Learning Fundamentals 37
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Backpropagation s ™ i im

L ]

« f, W) = [|[Wx||? = 31, (Wx)?

f(@=Iqll* =qf + g5+ +qs

af
01 05 ag, 24
. . qi
W l—o.3 0.8
l0.088 0.176 q1 Wa,nx1 + -+ Wi nyXn
0.104 0.208 g f g = [ : ‘ = Wx = :
0.221 dn WX + -+ Wanxn
0,261 0.116
" % G, G,
10.447 1.00 A _ 1j=iX; —f = 1p-iXj * 2q;
_ 0.52. W, jy oW, j
0.2]
—0.112 ax, ek ax.  ZLida,
: ] X 0x; 0q; 0x;
. 0.636 i
= Yk 2qk Wiy
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Neural Networks N i

= Linear Score Function

-f=Wx

= 2-Layer Neural Network

= [ =W, max(0, W;x)

3072 100 10

= 3-Layer Neural Network

= f = W3 max(W; max(0, W;x))

July 2, 2019 Deep Learning Fundamentals 39



Neural Networks

=
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Impulses

\ dendrite
O
Cell body ‘

axon

Impulses carried away
from cell body

July 2, 2019
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presynaptic
terminal
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axon from a neuron

*@ synapse
L WeTo

cell body f (Zw‘r n b)
wi I i
o ur&; -|— b =
; = f output axon
activation
Wo Lo function
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Neural networks: Architectures N i

layer

input layer input layer
Fully Connected Layers hidden layer 1 hidden layer 2
= "2-layer Neural Net" = "3-layer Neural Net”
= "l-hidden-layer Neural Net” = "“2-hidden-layer Neural Net”

July 2, 2019 Deep Learning Fundamentals 41
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Part V
Convolutional Neural Networks
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Important Events of CNNs

« LeNet-5

=« Used for Document Classification (1998)

Image Maps

Input

F K QOutput
Dk L1 A .
& L ‘:[7 v
) Full nnected
utions

Convolu

Subsampling

= AlexNet
= Used for Image Classification (2012)

i | —— K -4
N, | 5 N s | I\I' } B |: { |J-| E | v —
6 ] I e | o | | S & 3 L5 -I o | L Y ST 4 | 4\
NS wt | - - Y| | N AN AT N
B i ‘: e 3 { 5% i | i LY ) P R T '.Il:lg:rn.u
i : — & - i II'.

192
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Fast-forward to Today: CNNs are Everyvghere M iEim

-

. <J

ImageNet Classification Error (Top 5)

30.00%
’ 1.3 million high-resolution images
- 1,000 categories

25.00%

20.00%

15.00%

10.00%

- I I

i1 B =

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG) 2014 (GoogleNet) Human 2015 (ResNet) 2016 (GoogleNet-v4)
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Fast-forward to Today: CNNs are Everywhere M iEiim

sensetime
. \f'
= Image Classification
Probability
- 5| Flower mu——
m £
Slldlng wmdow X £ 2
_ 1 2 x 3 |Cup
m
. m > -
& - e «*@ 5o
- w =
complex shapes st T”" harcanbe X3 . 'd-% § -
ised to define a oy . 5
A L. F A2 ,.-‘ ’ s L gTree’ []
AN . N - . /* . £

Every feature map output is the -

result of applying a filter to the image
The new feature map is the next input

FC FC

Activations of the network at a particu!an'jv:r/

\
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Fast-forward to Today: CNNs are Everywhere ¢/ ijii

= Object Detection in 2D/3D

July 2, 2019 Deep Learning Fundamentals 46



Fast-forward to Today: CNNs are Everywhere ¢/ Hijil

= Semantic Segmentation

July 2, 2019 Deep Learning Fundamentals 47



Fast-forward to Today: CNNs are Everyvghere N &l

= <

« Pose Estimation

e g

— T i h
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Fast-forward to Today: CNNs are Everywhere A i i

= Image Super Resolution

bicubic SRResNet SRGAN
(21.59dB/0.6423) | (23.53B/0.7832) (21.15dB/0.6868)
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Fast-forward to Today: CNNs are Everywhere P i i

= Depth Estimation

July 2, 2019 Deep Learning Fundamentals 50



Recap: Fully Connected Layer - N i

= Given an image of size 32x32x3

input activation
Wz
1 10 x 3072 1[0
3072 * 10
weights
1 number

the result of taking a dot product between a
row of W and the input (a 3072-dimensional
dot product)
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Convolutional Layer M il

/ o

. Filters always extend the full
| depth of the input volume
32x32x3 Image

5x5%3 Filter

Convolve the filter with the image
l.e. “slide over the image spatially,
computing dot products”
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Convolutional Layer Yo l:1l
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32x32x3 Image

1 number
the result of taking a dot product between the filter and a small

5%5x%3 chunk of the image
(i.e. 75-dimensional dot product + bias)

5x5x%3 Filter
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Convolutional Layer Yo l:1l
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32x32x3 Image

28%x28x%x4
Feature Map

v

convolve (slide) over

5x5x3 Filter . :
all spatial locations

Conclusion: If we have 4 5x5x3 filters, we can get 4 separate feature maps.

The number of parameters of the convolutional layer is 5x5x3x4 + 5x3x4 = 360.
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Convolutional Layer M il

Assume the input is of size 7x7,

and the filter is of size 3x3.

With Stride = 1:

Output size is 5x5.

With Stride = 2:

Output size is 3x3.

With Stride = 3:

Cannot apply 3x3 filter on 7x7 input with stride 3.

Output Size= (Input Size — Filter Size) / Stride + 1
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Convolutional Layer 5 i

sensetime
¥ . ;

L | <

Sometimes, we pad zeros to the border.

Assume the input is of size 7x7,

and the filter is of size 3x3.

With Stride =3 and pad =1
Output size is 3x3.

UPDATE:
Output Size =
(Input Size — Filter Size + 2 * Padding) / Stride + 1

July 2, 2019 Deep Learning Fundamentals 56



Convolutional Neural Networks N i

32 28 24
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g.6 e.g. 10
5x5x3 5x5x6
32 filters 28 filters 24
3 6 10

= ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

= Shrinking too fast is not good, doesn’ t work well.
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Convolutional Neural Networks M i

Low-level Features

High-level Features
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Pooling Layer

L ]

0 1 Max Pooling

5 6 Kel.'nel Size = 2
Stride = 2

3 2 Avg. Pooling
Kernel Size = 2

0 1 .
Stride = 2

July 2, 2019
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112x112x64
pool

_

224x224x64
6 8
3 4
3 5
15| 4 224

224

Deep Learning Fundamentals
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How to Train a Neural Network? - N i

= Babysitting the Learning Process

= Data Preprocessing

= Choose the architecture (Convolutional Layers, Activation functions, Losses)
= Weights initialization

= Optimizers used for updating parameters

= Optional
= Data Augmentation
= Batch Normalization

= Dropout

July 2, 2019 Deep Learning Fundamentals 60
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Data Preprocessing ™ iGi i

« Normalize

original data zero-centered data normalized data
10 - - 10 - 10 -
“_"'ii::. A
5t 5 i 5
o e - 0
i KA * )
. ——
05 3 g = 0 5 T = 0 5 m
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Activation Functions

= Sigmoid

1
1+e=X

= 0(x) =
= RelLU

= f(x) = max(0,x)
= Leaky RelLU

« f(x) = max(0.01x, x)
= ELU

X x>0

'f(x)z{a(ex—l) xzo

July 2, 2019

Sigmoid
RelLU

Deep Learning Fundamentals
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10

Leaky ReLU

10

ELU
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Activation Functions

= Sigmoid

1
1+e=X

n O'(X) =

= Squashes numbers to range [0,1] - ° 10

= Issues
= Saturated neurons “kill" the gradients
= Sigmoid outputs are not zero-centered

= exp() is a bit compute expensive

July 2, 2019 Deep Learning Fundamentals
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Activation Functions

10

= RelLU
= f(x) = max(0,x)

« Characteristics
= Very computationally efficient

= Converges much faster than sigmoid/tanh in practice (e.g. 6x)

= Issues

A

= Not zero-centered output
= dead ReLU DATA CLOUD

5

active ReLU

ill never activate
=> never update

July 2, 2019 Deep Learning Fundamentals
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Activation Functions N i

10

= Leaky RelLU
= f(x) = max(0.01x, x)

— L 10

= Characteristics
=« Does not saturate
= Very computationally efficient
= Converges much faster than sigmoid/tanh in practice (e.g. 6x)

= Will not “die”

July 2, 2019 Deep Learning Fundamentals 65



Activation Functions N i

10

« ELU

X x>0

'f(x)z{a(ex_l) x <0 - 1o

« Characteristics
= All benefits of ReLU
= Closer to zero mean outputs

= Negative saturation regime compared with Leaky ReLU adds some robustness to
noise

= Issues

= Computation requires exp()
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Weights Initialization M il

= What if all the initial values are set to 0?

= Output the same thing and have the same gradient.

= What if initial values are samples from a Gaussian distribution ¢(0,0.01)?

= Works small for small networks, but problems with deeper networks.

= How to solve the problem?

« Xavier initialization
= Kaiming initialization
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Batch Normalization M il

| 8
T

= "Do you want unit gaussian activations? just make them so.”

= Consider a batch of activations at some layer. To make each dimension unit

gaussian, apply:

xk — E[x*]
gk =
J Var[x¥]
N N N N N N DN O
c c c
o o S = S o S )
El |2 |8 |9 |8 |2 |8 S
) S = S = = = 5 Note: BNs are usually inserted after Fully
X S % - g — o § o Connected or Convolutional layers, and
N O = O =z | gl & pa N8 before nonlinearity.
X < X < |2 < o
X X S ~ S| 3| & S - E
ST LE] 7] (8)E1) | & ™)z
N (9] (9]
NN NN N2 AN NN
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Batch Normalization

=

- sensetime

Input: Values of z over a mini-batch: B = {1 };
Parameters to be learned: ~, 3

Output: {y; = BN, 5(z;)}

1 ™
2 i / mini-batch
pB < — 2_1 3 // mini-batch mean
1 s
2 2 - L
— = i~ // -batch
OB ¢ — ;:1(3: ) mini-batch variance
T; e el // normalize
vV 0323 +€
Yi + VT; + B = BN,y g(z;) // scale and shift

\ -
T

Improves gradient flow through the network
Allows higher learning rates

Reduces the strong dependence on

initialization

Acts as a form of reqgularization in a funny
way, and slightly reduces the need for

dropout, maybe
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Babysitting the Training Process

=

©  sensetime

= Choose a Proper Learning Rate

A /
loss

low learning rate

high learning rate

good learning rate

-

epoch

July 2, 2019

= Overfitting

Clasification accuracy

080

075

070

065 |

0.60 |

=
Ln
Ln

050

045

040

— Training accuracy

— Validation accuracy

0 20 40 G0 80 100

nnnnn
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Optimizers N Ei

II': . % |I

= SGD = Problems with SGD
= gt = Vo, f(0:-1)
= Vg, = —1NY¢
= SGD + Momentum
= My = Ume_q + g
= VO,= —nm; Local Minima
= Typically, u = 0.9 or 0.99
Saddle Point
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b sensetime

Optimizers /D Bl

« AdaGrad « Adam

= N =Neq + gf my = ume_q + (1 — p)g;

« Ny =vne_q + (1 —v)gf

_ 0
" Vet_ m It
— me
m My = 1yt
= RMSProp
— Nng
« Ny =vne_q+ (1 —-v)gf = e =
.Vet:_ n 'gt .Vg :_ﬂ.n
ngt+e t /ﬁ;_l_e
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Thank You!




